Impact of Scope Creep on Software Project Quality*

Rahul Thakurta
Assistant Professor
Xavier Institute of Management,
Bhubaneswar, India
rahul @ximb.ac.in

Abstract

Generation of software requirements can occur in different ways during the course of
the project, affecting the process in a widely different manner and extent. Using system dynamics
modeling approach, here we study the impact of scope creep following different patterns on the
project quality assurance activity. Results indicate non-uniform deviations across values of
certain process parameters like quality assurance effort, error-detection, etc under the
experimental scenarios. Findings are expected to assist project managers in devising approaches
that contribute to better quality of the final delivery.

Keywords: Quality Assurance, Scope Creep, System Dynamics
Introduction

Despite advances in project management methodologies and tools, the chances
that a software project is able to achieve its process estimates is about 30% (The Standish
Group, 2004). A major reason behind such phenomena is the frequent change of
requirements during project progress, brought about by the dynamic nature of development
activities (Winters,.2010). This phenomenon where there is a change in the set of
requirements due to addition, deletion, and modification during project progress is called
requirement volatility. Studies related to software project risks have attributed requirement
volatility as one of the primary causes resulting in project failures (Davis, Nurmuliani,
Park and Zowghi, 2008; Mathiassen, Saarinen, Tuunanen and Rossi, 2007).

In this study, we narrow down the definition of requirement volatility to focus only
on scope creep. Scope creep has been defined as the addition of requirements or
functionality to the existing scope during execution of the project. The addition/generation
of requirements out of scope creep has been observed to occur following different patterns,
for example, exponential decay (Abdel-Hamid and Madnick, 1991), exponential rise
(Zowghi and Nurmuliani, 2002), and triangular (Houston, Mackulak and Collofello, 2001).
These patterns are the result of generation of change orders/requests by the users or
customers while the project development is still on. Now, will these changes following
different patterns have similar impact on the project quality? The answer to such a question
assumes greater significance in the current context, with the delivery quality considered
to be one of the important determinants of project success or failure.

* Received November 16, 2012; Revised February 11, 2013

38 | Vilakshan, XIMB Journal Vol.10 (1) ; March 2013

In this paper, we investigate the impact of these various requirement generation
patterns out of scope creep on parameters related to the project quality assurance (QA)
activity. QA is chosen because of its significant role in upfront detection and correction of
errors (Abdel-Hamid, 1988). We introduce the metric QA effectiveness in order to judge
the usefulness of the QA process. QA effectiveness is measured as follows:

number of errors detected
QA effortexpended

QA effectiveness =

This metric is different from the Defect Removal Efficiency (DRE) metric which is
one of the most important metric for measuring QA efficiency. DRE metric is represented as:

100*E

DRE (in %) =
(E+D)

Where, E = number of errors found before delivery
E+D = number of errors found after delivery

We have used QA effectiveness in our study as we focus on how scope creep
during project development influences actual effort allocation to the QA process, and this
is expected to have tangible influence on the project delivery quality.

The paper is structured as follows: the next section updates on some background
work related to this research work. The following section presents the methodology that
has been adopted to carry out the study. The study results are presented and discussed
subsequently. Finally in conclusion, we summarize the key findings and highlight the future
research opportunities.

Relevant Literature

Scope creep has been addressed in the literature mostly in the context of
requirement volatility. Studies on scope creep in software projects have looked into its
nature, cause and effects, and management strategies. Researchers have tried to ascertain
scope creep both in terms of magnitude and pattern of requirement addition (Barry, Kemerer
and Slaughter, 2006; Thakurta, Roy and Bhattacharya, 2009). The causes of scope creep
mostly relate to problems with comprehension (e.g. conflicting requirements), behaviour
(i.e. of project members and users), and actions (i.e. project management decisions)
(Davis et al., 2008; Kotonya and Sommerville, 1998; Nurmuliani, Zowghi and Fowell,
2004). The effect of scope creep is found to be pronounced on project quality. Late
additions in requirements significantly impact the proportion of high severity defects resulting
in deterioration of product quality (Ferreira, Collofello, Shunk and Mackulak, 2009; Zowghi
and Nurmuliani, 2002). Finally, the activities concerning managing scope creep have mostly
tried to manage occurrence of scope creep with respect to magnitude. The dominant
suggestions in this regard include formation of change control boards (Jones, 1998),
adoption of specific project development methodologies (Thakurta and Ahlemann, 2010),
and adoption of specific approaches, for example, developing requirements jointly with
users (Jones, 1998), base lining requirements (Wiegers, 1999), etc.

Thakurta, Impact of Scope Creepon 39

Studies on software project QA have primarily focused on the different quality
improvement approaches in order to increase acceptance of the project deliverables. Of
the recent studies, Liu, Tamai and Nakajima (2009) suggest a way to integrate formal
specification, review, and testing activities so as to detect and rectify requirement errors.
Wagner, Lochmann, Winter, Goebb and Klaes (2009) update on the usage, techniques,
and associated problems related to four quality models used in practice. Li, Shu, Boehm
and Wang (2010) investigate the effectiveness of review, process audit, and testing and
their overall contribution to return on investment (ROI).

The studies hitherto indicate scope creep to be a major cause of concern in
relation to achieving successful project endeavours. Furthermore, the noted emphasis on
managing scope creep mostly rests on assuming that scope creep can influence project
performance in terms of the magnitude of occurrence. Given the importanceof quality in
terms of achieving project success (Shenhar, Dvir, Levy and Maltz, 2001), here we try to
figure out how scope creep following identified patterns can influence the QA process.

Methodology
Task Environment

We use the system dynamics (SD) (Sterman, 2000) approach in our study which
works on the premise that system behavior is an outcome of the interaction among its
feedback loops. The vocabulary of SD introduces the causal loop diagram which represents
the problem hypothesis. The causal loop diagram is developed by linking cause and effect
relationships in a sequence of chains and loops. Each linkage is assigned a plus or minus
sign. A plus sign present on alinkage indicates that the increase (decrease) in the
independent variable will lead to increase (decrease) in the dependent variable. The minus
sign on the linkage indicates the reverse. The causal loop model is subsequently converted
into a stock and flow model. Simulation of the stock and flow model allows one to
investigate for the desired effects under different run conditions.

Our research setting has been contextualized by considering a familiar in-house
medium-sized project implementing the waterfall methodology (Royce, 1987). The choice
of waterfall methodology was driven out of its observed predominance even in projects
endangered because of scope creep (Thakurta and Ahlemann, 2010). The selection of
waterfall methodology was found to be driven by management preferences and business
influence. Given the findings, here we opt for Abdel-Hamid’s (Abdel-Hamid and Madnick,
1991) SD model which implements the development environment of the waterfall
methodology. Scope creep is captured in this model by use of a factor ‘task underestimation
fraction’. This represents the maximum amount of new tasks that can get added to the
project scope over the project duration. In the model, schedule pressure plays a key role
in determining the extent of effort allocation to QA. The model further assumes that
there is no hard deadline for project completion. The causal loop diagram representing
the problem of interest has been shown below in Figure 1. Figure 1 has been derived by
drawing out the relevant causal loops from the Abdel-Hamid’s SD model related to the

40 | Vilakshan, XIMB Journal Vol.10 (1) ; March 2013

problem that we want to investigate in this study. The causal loop diagram shown in
Figure 1 is able to capture successfully both the sources of scope creep and the parameters
that will enable one to arrive at measure of QA effectiveness as discussed above. An
explanation of the causal behavior arising out of the model structure is included below.

WorkForce

/I Nperience h[ﬁ\
WorkForce Productivity \
+ J:'I'ﬂ!.'[ll."l] of Barors
_ Detected
Software

Hiring Rate Dev clupmcu[

Project Tasks + H‘lﬂl‘ Cemeration
roject Tasks -

Remammg /
Schedule Pressure Workdorce
U}q ation to QA
+

Effort Still Ntcdcd
Pm_.erl Sire + Scope Creep
-—

Figure 1: Model Causal Loop Diagram

Occurrence of scope creep contributes to an increase in the project size. The
schedule pressure thus increases in the project. The increase in schedule pressure
contributes to more error generation during project progress. On the other hand, given the
scenario, there is a propensity of the project managers to cut down on the workforce
allocation to QA in order to reduce chances of cost and schedule overruns. The net
result is a decrease in the fraction of errors detected, thereby affecting QA effectiveness.

On the other side, the increase in the value of effort still needed because of
scope creep necessitated project hiring. With hiring, the project workforce also increases.
The rate of software development gets positively affected in presence of higher
workforce, which in turn causes more tasks to be waiting for QA. Schedule pressure is
reduced owing to task processing at a higher rate in presence of the higher workforce.
The decrease in schedule pressure reduces the error generation rate. Simultaneously
some increase in workforce allocation to QA also takes place. All these contribute to
increasing the QA effectiveness.

Based on the model structure, we investigate how requirement generation following

Thakurta, Impact of Scope Creepon 41

different patterns influence the structure, and hence the behaviour. To achieve this, the
model was simulated under four different requirement generation patterns given below
using the commercially available iThink' software.

Experiment Design

In a real life scenario, generation of change orders can appear to be completely
random. The basic structures of such patterns are depictions of increasing trend,
decreasing trend, and uniform trend, which are described below for the purpose of
experimentation. The presence of these basic structures is also evident from the requirement
change pattern that has been provided in Stark, Oman, Skillicorn and Ameele (1999, pp 8)
in a different context (i.e. for maintenance projects).

Linear Decay: Here the rate of change order generation is high initially, and it decreases
linearly with time. The high rate of change order generation occurs because of collaboration
with users’ early on in the project. The requirements stabilize with time; and the rate of
change declines. Projects implementing agile methodology are likely to demonstrate
patterns which resemble linear decay pattern of requirement variation.

Linear Rise: This is opposite to that of the linear decay with the rate of requirement
generation increases with time. Delayed user involvement in the project can contribute to
such a variation of requirements with time. Projects implementing waterfall methodology
are likely to demonstrate patterns which resemble linear rise pattern of requirement
variation.

Uniform Variation: Constant rate of change order generation throughout the project’s duration
which causes project tasks to grow linearly. This kind of variation may be observed in
projects which implements spiral methodology.

Triangular Variation: This is the combination of linear rise and linear decay pattern with
linear rise early on, and linear decay at the later stages of the project. Projects implementing
incremental-iterative methodology are likely to demonstrate patterns which resemble series
of triangular variations in requirements.

The relevant parameters to simulate the model were based on the data of a real
life software project carried out in an IT firm based in India. The project implemented the
waterfall methodology, which matched our research setting (indicated above). The project
is small sized having initial specified job size as 7572 delivered source instructions (DSI)
which corresponds to 126.2 function points (FP). In order to carry to the simulation, it
was required to specify the initial values of effort and schedule. COCOMO (‘constructive
cost model’: Boehm, Clark, Horowitz, Christopher, Madachy and Selby, 1995) was used
for the purpose, which enables one to arrive at the estimates of effort and schedule given
the project size. The initial estimates of effort and schedule, hence derived is given in
Table 1.

' Available at http://www.iseesystems.com/softwares/Business/ithinkSoftware.aspx

42 | Vilakshan, XIMB Journal Vol.10 (1) ; March 2013

Table 1:Initial Parameter Estimates

Parameter Estimate

Initial Specified Job Size 126.2 Function Point (FP)
Initial Estimated Effort 630 Man-Days

Initial Schedule Estimate 90 Days

Project Average FTE 7.0 Persons

In the model, we additionally set a quality objective of 75% implying high quality
requirements of the project deliverables. We allow the project tasks to grow by 50%
during project development which is achieved by setting the parameter task underestimation
fraction at 0.67. The growth of project tasks under the four different requirement generation
patterns (Figure 2) is shown in Figure 3.

3.00

2.00 1

0.00 - e
1 71 141 211 281 351
Time (days)
= Uniform Linear Rise ——LinearDecay =—Triangular

Figure 2. Change Order Generation Rates.

1,467.00
1,267.00
1,067.00
1 71 141 211 281 351
Time (days)
Uniform Linear Rise ——Linear Decay =——Triangular

Figure 3. Growth of Project Tasks

Thakurta, Impact of Scope Creepon 43

The different requirement generation patterns modulate the growth of projects
tasks in different ways contributing to variations depicted in Figure 3. The results are
discussed in the next section.

Results

Table 2 show comparison of project performance under the four requirement
generation patterns considered in this study. In all cases, a total of 189.3 FP of tasks
were processed because of addition of new requirements to the project scope during
development. The results allow us to make the following observations:

1. QA effort expended could be found to be maximum under uniform, and minimum
under linear decay (19% variation).

2. Rework effort (33% variation) and completion date (6% variation),-are also
maximum under uniform, and minimum under linear decay.

3. QA effectiveness (elaborated above) could be observed to be maximum under
linear decay, and minimum under uniform. The extent of variation in this case is
about 21%.

Results indicate variations in parameters across the four requirement generation
patterns considered in this study. In order to understand the variations, let's compare
results for linear decay and uniform patterns.

Under linear decay, the change order generation rate is highest upfront (Figure
2). Due to rapid build-up of requirements initially, hiring gets triggered. This augments the
workforce quickly as-evident from Figure 4. The higher rate of change order generation
in this case also leads to schedule pressure (not shown). The schedule pressure results in
some curtailment in resources allocated to the QA activity. Hence, QA effort expenditure
is lower in this case as the results in Table 2 shows.

Atthe final stages, with progressive decrease of change order generation (Figure
2), no further hiring takes place and the workforce settles at a constant level (Figure 4).
The communications overhead is also less in this case, and hence the project is able to
process the tasks relatively early (Table 2).

In comparison, with uniform pattern, the augmentation of project tasks happens
uniformly throughout the project time-span (Figure 2). Under uniform, the perceived
schedule pressure (not shown) is not much initially. Thus there is no curtailment in effort
allocation to QA, which is found to be the maximum in this case (Table 2). In absence of
perceived schedule pressure, the rate of hiring upfront is also comparatively low (Figure
4). The rate of hiring however increases towards the mid-end stages as more visibility is
gained in presence of uniform change order generation. The FTE workforce is hence
higher in this case compared to the other patterns (Table 2). The late hiring negatively
influence project productivity (not shown), resulting in maximum schedule slippage to be
encountered in this case (Table 2).

44 | Vilakshan, XIMB Journal Vol.10 (1) ; March 2013

Table 2:Impact of Different Requirement Generation Patterns on Project Parameters

Linear Decay Linear Rise Triangular Uniform

QA Effort (Man-Days) 171 189 179 203
Rework Effort (Man-Days) 9 12 11 12
Completion Date (Days) 114 118 117 121
FTE Manpower (Person) 19.8 22.1 21.7 21.3
Errors Generated 58 61 65 57
Errors Detected 48 51 49 47
Percent Error Detected 82.76% 83.61% 75.38% 82.46%
QA Effectiveness 0.28 0.27 0.27 0.23

[

) [

Time {Days)
o Uit e | ey

Figure 4. Variation in Workforce subjected to Uniform and Linear Decay
Requirement Generation Patterns

Error generation under uniform change order generation is affected by the presence
of rookies, and the schedule pressure and is found to be nearly identical to that under the
linear decay pattern. In presence of the assigned quality objective of 75%, nearly same
number of errors also gets detected under the two patterns. The presence of a lower
value of QA effort expended hence resulted in QA effectiveness to be the largest under
linear decay.

The results show how the pattern of change order generation influences the
dynamics by which tasks are generated and processed during software development.
Further, QA effectiveness values under the linear rise and triangular patterns are found to
be intermediate (Table 2). Under the linear rise patterns, the change order generation

Thakurta, Impact of Scope Creepon 45

rate is lower during the initial stages (Figure 2). The schedule pressure hence remains
lower, and there is not much curtailment in the QA activity. In comparison to the linear
rise case, the curtailment in QA effort allocation is more under the triangular pattern as
the gradient of increase in change order generation is higher in this case (Figure 2).

Conclusion

The results permit us to conclude that the effectiveness of the QA process is
indeed influenced by the pattern of change order generation during project progress.
Given the experimental scenarios, QA effectiveness was found to be the maximum under
linear decay, while results under the uniform pattern indicated it to be the minimum. The
results suggest that project managers should device some approaches of acquiring and
releasing the requirements in a linear decay fashion, which in turn is_alsoexpected to
contribute positively towards increasing the project quality.

The level of variation in the results under the differentsimulation runs is not very
high given the facts that the experimentation was conducted based on data of small scale
project, and the project did not have any imposed schedule penalty. Further, different
results can also be obtained depending upon other project characteristics like project
development methodology etc. This further suggests that the project manager needs to
adjust their project management style based on the expectation of change order generation
in projects. Project managers can use the simulation bench as a decision support framework
in order to arrive at approaches that bestmeet the agreed performance criteria. Research
can also look at efficacies of previously explored approaches towards multiple goal
satisfaction (i.e. cost, schedule, quality adherence). We expect that the results will pave
the way for more similar studies benefitting the software project management discipline.

References

Abdel-Hamid, T.K.(1988). The economics of software quality assurance: a simulation-based case
study. MIS Quarterly, 12 (3).

Abdel-Hamid, T.K., & Madnick, S.E. (1991). Software project dynamics: an integrated approach.
Englewood Cliffs, NJ: Prentice Hall.

Barry, E.J., Kemerer, C.F., & Slaughter, S. (2006). Environmental volatility, development decisions,
and software volatility: alongitudinal analysis. Management Science, 52 (3), 448-464.

Boehm, B., Clark, B., Horowitz, E., Christopher, J., Madachy, R., & Selby, R. (1995). Cost models for
future software life cycle processes: COCOMO 2.0. Annals of Software Engineering, 1, 57-94.

Davis, A.M., Nurmuliani, N., Park, S., & Zowghi, D. (2008). Requirements change: what’s the
alternative? Proceedings of the 32nd Annual IEEE International Computer Software and
Applications Conference, 635-638.

Ferreira, S., Collofello, J., Shunk, D., & Mackulak, G. (2009). Understanding the effects of
requirements volatility in software engineering by using analytical modeling and software
process simulation. Journal of Systems and Software, 82 (10), 1568-1577.

Houston, D.X., Mackulak, G.T., & Collofello, J. (2001). Stochastic simulation of risk factor potential
effects for software development risk management. Journal of Systems and Software, 59 (3).

46 | Vilakshan, XIMB Journal Vol.10 (1) ; March 2013

Jones, C. (1998). Estimating software costs. New York: McGraw Hill.

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: processes and techniques.
Chichester: John Wiley and Sons.

Li, Q., Shu, F., Boehm, B., & Wang, Q. (2010). Improving the ROI of software quality assurance
activities: an empirical study. Proceedings of the 2010 International Conference on New
Modeling Concepts for Today’s Software Processes: Software Process (ICSP’10), Berlin,
Heidelberg.

Liu, S., Tamai, T., & Nakajima, S. (2009). Integration of formal specification, review, and testing for
software component quality assurance. Proceedings of the 2009 ACM symposium on Applied
Computing (SAC *09), New York, USA.

Mathiassen, L., Saarinen, T., Tuunanen, T., & Rossi, M. (2007). A contingency model for requirements
development. Journal of the Association for Information Systems, 8 (11), 570-598.

Nurmuliani, N., Zowghi, D., & Fowell, S. (2004). Analysis of requirements volatility during software
development life cycle. Proceedings of the 2004 Australian Software Engineering Conference,
Innsbruck, Austria.

Ropponen, J., & Lyytinen, K. (2000). Components of software development risk: how to address
them? A project manager survey. IEEE Transactions on Software Engineering, 26 (2), 98-112.

Royce, W.W. (1987). Managing the development of large software systems. Proceedings of the
9th International Conference on Software Engineering, L.os Alamitos, CA, USA.

Shenhar, A.J., Dvir, D., Levy, O., & Maltz, A.C. (2001). Project success: a multidimensional strategic
concept. Long Range Planning, 34 (6).

Stark, GE., Oman, P, Skillicorn, A., & Ameele, A.(1999). An examination of the effects of requirements
changes on software maintenance releases. Journal of Software Maintenance, 11 (5), 293-309.

Sterman, J.D. (2000). Business dynamics: systems thinking and modeling for a complex world. New
York: Irwin/McGraw-Hill.

Thakurta, R., & Ahlemann, F. (2010). Understanding requirements volatility in software projects —
an empirical investigation of volatility awareness, management approaches and their
applicability.Proceedings of 43rd Hawaii International Conference on System Sciences, Hawaii,
USA.

Thakurta, R., Roy, R., & Bhattacharya, S. (2009). Impact of requirements discovery pattern on
software project outcome: preliminary results. Proceedings of the 42nd Annual Hawaii
International Conference on System Sciences, Hawaii, USA.

The Standish Group. (2004). Chaos report. Retrieved from http://www.standish-group.com

Tiwana, A., & Keil, M. (2004). The 1- minute risk assessment tool. Communications of the ACM, 47
(11),73-77.

Wagner, S., Lochmann, K., Winter, S., Goebb, A., & Klaes, M. (2009). Quality models in practice:
a preliminary analysis. Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement (ESEM *09), Washington, DC, USA.

Winters, F. (2010). The top ten reasons projects fail (part 7). Retrieved from http://
www.gantthead.com/article.cfm?ID=187449

Zowghi, D., & Nurmuliani, N. (2002). A study on the impact of requirements volatility on software
project performance. Proceedings of Ninth Asia Pacific Software Engineering Conference,
Queensland, Australia.

